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Abstract
At temperatures above 600 K in silicon, unlike at lower temperatures, the
partitioning of muonium between its neutral paramagnetic states and its charged
or electronically diamagnetic states corresponds closely to thermodynamic
equilibrium. The individual charge states are short lived, with many cycles
of carrier capture and release occurring within the muon lifetime. The
resultant intermittent hyperfine interaction depolarizes the muons strongly, with
longitudinal and transverse relaxation rates remaining distinct up to about 700 K
but becoming equal at still higher temperatures. Data up to 900 K are presented
and interpreted. The muon spin rotation spectrum in transverse magnetic fields,
although collapsed to a single broad line in this charge exchange regime, is
shifted substantially from the muon Larmor frequency, the shift being non-linear
in field and only in small part due to electron polarization. A new density matrix
treatment shows how all three observables can be accounted for with a consistent
set of transition rates. These in turn may be interpreted in terms of effective
donor and acceptor energy levels appropriate to this high-temperature regime,
confirming negative-U behaviour and providing the first estimate,for muonium,
of this elusive parameter. At temperatures where passivation complexes are
dissociated, these findings provide a guide to, and microscopic models for, the
electrical activity of hydrogen.
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1. Introduction

1.1. Muonium as an experimentally accessible model for hydrogen

Muonium in silicon is treated in this paper from the perspective of a very real materials science
issue, namely the electrical activity of hydrogen impurity [1]. We review how µSR discoveries
have contributed to the current understanding of the underlying interplay of site and charge
state and examine the extent to which the analogy between muonium and hydrogen itself has
been validated at temperatures below and around room temperature. We go on to show how
µSR studies are illuminating processes which become active at high temperature, with data
up to 900 K. This work is concerned with the isolated or monatomic defect centres, namely
the interstitial proton or positive muon, the neutral hydrogen or muonium centres and, where
appropriate, the hydride ion and its muonium counterpart. At ordinary temperatures these will
be quite rare for hydrogen itself, most of this unavoidable but highly reactive impurity being
paired with other defects or impurities. They will become more important at high temperatures,
where passivation complexes are dissociated—typically above 400 K for donor complexes and
500 K for shallow acceptors [1]. But then the individual charge states are short lived, as we see
in the later sections of this paper. For these various reasons the isolated centres have been hard
to detect or characterize by conventional spectroscopies for hydrogen itself. The microsecond
timescale of µSR observations on the other hand,set by the muon lifetime,τµ ≈ 2.2 µs, greatly
favours observation of isolated states of muonium in intrinsic interstitial sites. The nature of
muon spin relaxation—in particular, the response to intermittent hyperfine interaction which
is the topic of this paper—additionally allows inferences to be drawn on processes such as
charge state transitions which occur on much faster timescales still. In the present work, we
infer charge state lifetimes as low as a few picoseconds.

1.2. The neutral paramagnetic centres

For the neutral centres, which are paramagnetic by virtue of a single unpaired electron, it
is no exaggeration to say that the much needed microscopic pictures of crystallographic
site and electronic structure came first from muonium spectroscopy. The discovery of their
metastability in Si is already some three decades old: figure 1 reproduces the original spectrum
due to Brewer et al [2], showing hyperfine signatures of two distinct states coexisting in
a µSR spectrum of Si recorded at cryogenic temperature. The details and implications of
their interpretation, as well as those of similar spectra in Ge, diamond, GaAs and GaP, have
since been reviewed extensively [3, 4] and [5]7. In brief, their assignment to cage-centred
and bond-centred interstitial states with very different electronic structures has subsequently
been ratified by the modelling techniques of computational chemistry, as well as by such
spectroscopic data as exist for hydrogen itself. Several surprises were involved here. The first
is that, unlike the interstitial Li+ ion, the interstitial positive muon does not form a shallow
centre in which an electron is weakly bound, in an orbital which is dilated both by the low
effective mass of conduction electrons and by the bulk dielectric constant of silicon. Instead,
both muonium states are deep, with thermal stabilities indicating more tightly bound electrons
and with hyperfine parameters indicating correspondingly compact electronic orbitals.

The cage-centred neutral state resembles atomic muonium, in that it has an isotropic
hyperfine constant and so is spherically symmetric. Trapped-atom states of interstitial
hydrogen are well known to ESR spectroscopy in certain oxides and halides (i.e. in dielectrics)

7 This summary description cites earlier reviews of muonium spectroscopy and introduces spin exchange and charge
exchange dynamics.
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Figure 1. The original muon spin rotation spectra for silica and silicon [2], the former showing
a signature of interstitial atomic muonium, the latter showing both cage-centred and bond-centred
states.

and figure 1 shows that there is such a state of muonium in silica, SiO2. ESR spectroscopy
fails to detect atomic hydrogen centres in elemental Si, however, or indeed in other tetrahedral
semiconductors, so there is an apparent contradiction with the µSR finding here. (We argue
that the µSR spectroscopy is valid, and provides unique insights into hydrogen states that are
simply too reactive or transient to be seen by ESR spectroscopy.) A second surprise was that
this seemingly atomic state of muonium in Si has a hyperfine constant (A = 2006 MHz at low
temperatures) which is scarcely half that of free or vacuum state atomic muonium (4463 MHz),
as though its 1s orbital only had 45% occupancy. Despite this evident chemical interaction with
the surrounding host atoms, there is no directional bonding; the elastic interaction must also
be minimal, since this quasi-atomic form of muonium is highly mobile at all temperatures for
which its spectrum is visible (up to about room temperature). While this was originally dubbed
‘normal muonium’, we follow the recent usage and designate this state as Mu0

T, emphasizing
its charge state as well as its effective location at the ‘T site’, i.e. the centre of the tetrahedral
interstitial cages of the diamond-type lattice.

Arguably the greatest surprise was the coexistence of the additional paramagnetic state
of muonium in Si, at first dubbed ‘anomalous muonium’ or Mu∗ but now designated Mu0

BC
following assignment of the muon site to the centre of a stretched Si–Si bond (BC = bond
centre). Originally quite unanticipated, it is now generally held to be the more stable of the
two neutral centres, corresponding to the ground state of interstitial hydrogen. This is the
conclusion of most calculations which take due account of the lattice relaxation, if not of the
lattice vibration. Certainly there is a rather fine energy balance between the T and BC sites and
in the present work we again question which lies lower. The unpaired electron wavefunction
of Mu0

BC has donor character, borrowing silicon antibonding orbitals [6–8], but it is a deep
donor, detached from the conduction band by the local distortion, i.e. by the bond extension
necessary to accommodate the muon. Accordingly, its characteristic hyperfine frequencies
disappear from the µSR spectra above about 150 K, as this species appears to ionize. (We
discuss below whether this is literally the loss of an electron to the conduction band or whether
the higher temperatures inhibit electron capture in the first place.) The hyperfine anisotropy
indicates that it remains totally immobile up to this temperature, self-trapped by the lattice
relaxation, which entails a stretching of the original Si–Si bond by some 40%. The ionization
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Figure 2. Muon sites and energy levels in silicon, showing the correspondence between (a) the
configuration diagram [11] and (b) the donor and acceptor levels relative to the band gap [23].

energy is 210 meV, as determined from RF muon spin resonance [9–11],and is taken as defining
the depth of a donor level below the conduction band.

For comparison, the donor depth is only 34 meV for interstitial Li and 46 meV for the
classic shallow donor, substitutional P, both of which are essentially fully ionized by about
50 K [12]. Although both Mu0

T and Mu0
BC show varying degrees of delocalization of the

unpaired electron onto the surrounding lattice, in neither is it anything like that appropriate to
effective-mass donors: by contrast, the hyperfine constant is reduced by a factor of order 104

to just a few hundred kilohertz for the shallow-donor muonium states recently discovered in
certain compound semiconductors [13, 14].

1.3. The charged diamagnetic centres and the interplay of site and charge state

Just above the Mu0
BC ionization temperature, i.e. above about 150 K, the corresponding positive

ion is assumed also to be located at the bond centre, in an electronically diamagnetic state
which we designate as Mu+

BC. We use this explicit nomenclature, reserving µ+ for the energetic
incoming muons, to emphasize the fact that muons, like protons, cannot remain as free particles
in condensed matter. They always seek out the region of highest electron density to minimize
the defect energy, here the spin-paired electron cloud of the valence bond. Although there is no
experimental site determination for Mu+ in Si, nuclear magnetism being too weak to give the
necessary signature, the BC site is the theoretical expectation for H+ [15]. That Mu+

BC remains
the chief diamagnetic muonium state up to at least 400 K is a reasonably safe assumption and
we shall argue that it remains so to much higher temperatures.

The hydride ion, on the other hand, believed to exist in sufficiently n-type material, is
repelled to the region of lowest electron density, which in Si is the T site cage centre [15], thus
H−

T . In semiconductors with abundant nuclear moments, especially the quadrupolar moments
carried by group III and group V nuclei, site determinations for the diamagnetic charged centres
are more explicit: both Mu+

BC and Mu−
T have been identified experimentally in GaAs [16, 17].

The relationship between site and charge state is summarized in figure 2(a), with relative
energy levels and barrier heights as deduced from radio-frequency muon spin resonance (RF-
µSR) experiments performed at TRIUMF up to 450 K [9–11]. A closely similar scheme is
commonly used for hydrogen, with analogous nomenclature designating the site and charge
state [18]. The relative energy levels, barrier heights and dynamical parameters all prove
to be remarkably similar for muonium and hydrogen in silicon (in so far as they are known
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for hydrogen), justifying the use of muonium data as a guide to the electrical activity of
hydrogen [9, 10, 18].

Note that in order to compare the relative energies of different muonium charge states, the
overall system (e.g. in a cluster calculation) must have the same total number of electrons. Thus
in figure 2(a), the Mu0 energies include that of one electron at the conduction band minimum,
and those of Mu+ include two, for comparison with Mu−. This convention tends to conceal
the fact that the ionic energies vary with the Fermi energy and to give a false impression of
their relative energies. For instance, giving the energies of the additional electrons a mid-gap
Fermi energy rather than setting them in the conduction band inverts the order of the ionic
levels, making Mu+

BC thermodynamically the most stable state and Mu−
T the least stable, as

we believe to be the case in undoped material. We give a different representation in figure 6
below, when calculating equilibrium occupancies.

Although some authors question the importance of H0
T, finding that there is no adiabatic

barrier between the T and BC sites [21], for others it is the elusive transport states of
hydrogen [18]. The T to BC barrier could well be dynamic in origin, the heavy Si atoms
responding only sluggishly to the instantaneous position of an approaching hydrogen atom [19],
or of a still lighter muonium atom (mMu/mH ∼ 1/9). The mobility of H0

T would certainly
explain its ESR silence, since on the ESR timescale it would seek out and react with other
defects and impurities. The so-called AA9 centre of hydrogen in silicon, found by ESR
spectroscopy [20] shortly after elucidation of the Mu0

BC structure [6], could immediately be
identified as H0

BC, its hyperfine parameters (after scaling with the ratio of the muon and proton
magnetic moments) being essentially identical.

1.4. Electrical activity: donor and acceptor levels

Figure 2(b) gives the correspondence with the electrically active donor and acceptor levels.
If Mu0

BC is indeed the more stable of the two neutrals, construction of the donor level is
straightforward: its depth below the conduction band is then the ionization energy, without site
change, of Mu0

BC. The corresponding value for hydrogen, deduced from deep-level transient
spectroscopy, has most recently been given as 175 meV [18]. The difference between the
muonium and hydrogen values is quite accurately accounted for by the different zero-point
energies of the muon and proton, in the appropriate potential wells [14]. The zero-point energy
is not shown in figure 2 but it amounts to several hundred meV for the muon—greater than for
the proton by a factor

√
mH/mMu ≈ 3. Fortunately, the electrically active levels of figure 2(b)

represent differences between energy levels in figure 2(a), so the isotope effects are relatively
small, as quantified elsewhere [14]. It is this that makes muonium a useful model for the
electrical activity of hydrogen. It is worth noting that, for H0

BC as for Mu0
BC, the vibrational

energy quantum (twice the respective zero-point energies, assuming a harmonic potential well)
exceeds the binding energy of the unpaired electron [22]: roughly speaking, H0

BC ionizes before
it can be excited to its first vibrational level.

Construction of the acceptor level is more problematic. The original identification of its
depth, again referred to the conduction band, as the ionization energy without site change of
Mu−

T [9], is only correct if Mu0
T is the more stable neutral. Otherwise, the thermodynamic

definition is the energy difference between the stable neutral and the stable negative ion,
i.e. between Mu0

BC and Mu−
T , when these are ordered as in figure 2, and likewise for

hydrogen [23]. The Mu−
T ionization energy is experimentally the more accessible parameter,

determined by radio-frequency resonance studies (RF-µSR) as 560 meV, but from this must
be subtracted the site change energy � between Mu0

T and Mu0
BC [11].
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1.5. The negative-U question

So far, this crucial site change energy �—not the barrier between the T and BC sites but
the difference between the two potential minima—has eluded experimental determination.
This has made the ordering of the donor and acceptor levels indeterminate for muonium in
silicon, although we attempt a resolution in the present work. It brings us to a matter of some
interest for hydrogen itself. The donor level can be identified with the value of the Fermi
energy at which the neutral centre and positive ion are in equilibrium, i.e. the 0/+ switching
point. The acceptor level likewise concerns equilibrium of the neutral centre and the negative
ion, i.e. the −/0 switching point. This nomenclature is used in figure 2(b) and is explicit
in figure 6 below. Hydrogen in silicon is now generally considered to constitute a so-called
negative-U defect, in which the 0/+ switching level lies above the −/0 level. (Here U is the
Hubbard or Anderson correlation energy, in which Coulomb repulsion of two electrons in a
doubly occupied state, itself always positive, is offset by lattice relaxation energies.) With
single-site ionization energies for Mu0

BC and Mu−
T of 210 and 560 meV, respectively, Hitti et al

note that U is negative only if � < 350 meV [11]. Tantalizingly, early theoretical estimates
vary widely [24] and it is now realized that vibrational entropies may introduce a temperature
dependence of the levels [25]—or even a possible inversion, as our own data suggest. For a
positive-U system, the 0/− switching level lies above the 0/+ level, so as the Fermi energy is
raised through the gap, the positive, neutral and negative charge states are stabilized in turn.
If muonium in silicon does indeed constitute a negative-U system, thanks essentially to the
different lattice sites adopted by the positive and negative ions, this order is inverted so there is
no position of the Fermi level for which neutral centres are thermodynamically stable, either
at the cage-centred or the bond-centred state. Yet both are observed, coexisting in the low-
temperature spectra, with spin states that are long lived on the microsecond µSR timescale. Of
course, muonium centres are never formed in sufficient concentration (even at a pulsed muon
source) to equilibrate amongst themselves. Otherwise the implication of negative U is that
they would disproportionate, according to

2Mu0 → Mu+ + Mu−.

The fact that the neutral paramagnetic AA9 centre, i.e. H0
BC, is only detectable by means of

ESR under conditions of band-gap illumination [20] is entirely consistent with negative-U
behaviour.

The process of muon implantation, which must include the generation of electron–hole
pairs as the incoming energy is dissipated, appears to favour formation of the neutral centres,
which we take to be the starting point for subsequent charge state transitions. Muonium
dynamics, then, usually displays the initial stages of approach to thermodynamic equilibrium.
Thus the Mu0

BC spectrum in Si disappears by broadening in the ionization regime [3],as though a
single electron is first captured whatever the temperature, but the neutral state lifetime is subject
to an Arrhenius law. The ionization process may even be displayed directly by RF final state
analysis in a narrow temperature range [26]. It remains to reconcile this model, however, with
indications of a small but measurable delay to the initial electron capture, both in Si [27] and,
more convincingly, in GaAs [28].

According to figure 2(a), disappearance of the Mu0
T spectrum around room temperature

would correspond to a thermally induced site change to the bond centre (the barrier is 380 meV),
followed by rapid ionization. We should consider whether it might instead be due to hole
ionization, Mu0

T → Mu+
T + h, but the low ionization energy would be incompatible with the

general consensus [11, 21] that the acceptor level lies around mid-gap (the band gap is close
to 1.1 eV in Si at room temperature). We are also able to exclude hole ionization, even at
higher temperatures, from our own measurements (see section 7). Several more alternative
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explanations should be considered, according to the authors of the model of delayed muonium
formation [27, 28]: if the electron is initially captured into excited or Rydberg orbitals, thermal
ionization of these weakly bound precursor states may simply prevent their cascade to the
Mu0

T state above room temperature. We see below, however, that this cascade is certainly
not completely forbidden, even at much higher temperatures. Alternatively, second electron
capture may convert Mu0

T to Mu−
T —a process which is undoubtedly important in n-type Si [11]

and possibly also in intrinsic material at higher temperature.

1.6. The charge exchange regime

We come now to the exploration of these higher temperatures, with data up to 900 K. Just above
room temperature, a single narrow line at the muon Larmor frequency is seen in the muon
spin rotation spectrum, presumed to correspond to the positive ion, Mu+

BC. Full asymmetry
is not recovered until higher temperature is reached [3] but any muonium state is too short
lived to be characterized. The line remains narrow until just above 400 K, when it begins to
broaden, accompanied by the onset of a similar muon spin relaxation in longitudinal field.
The longitudinal relaxation was studied in some detail at TRIUMF by Chow et al [29], who
attributed it to a charge exchange regime in which conduction electrons are repeatedly trapped
and released by the implanted muons. In effect, muonium is formed and reionized repeatedly
when the encounter with thermally excited intrinsic carriers is sufficiently frequent. This was
an important insight, identifying processes for muonium which have their counterparts in the
high-temperature electrical activity of hydrogen.

The charge exchange process may be compared and contrasted with that of spin exchange,
where a paramagnetic centre remains undissociated but has its electron spin frequently flipped
by close encounters, i.e. Heisenberg exchange, with passing conduction electrons, usually
extrinsic. In Si, spin exchange is visible for Mu0

BC below the relevant ionization temperature
in highly doped n-type samples [30]. A mathematical treatment of fast spin exchange for
muonium centres or muoniated radicals with anisotropic hyperfine interactions is given by
Senba [31]. Both charge and spin exchange can in principle involve holes as well as electrons
and we return below to the question of which carriers dominate. Examples of all the various
processes are seen in the effects of encounters with optically excited carriers [32, 33]. In
principle, comparison of the muon response to doping, illumination or heating can distinguish
majority and minority carrier processes. Extending models of the type introduced by Kreitzman
et al [9], the recent paper by Kadono, Macrae and Nagamine [34] gives a useful compendium
of the different processes which must be considered, involving both electrons and holes8, as
well as the different signatures in the µSR data by which they may be recognized. It remains to
be demonstrated, however, that the expressions introduced by these various authors for site and
charge state transitions do lead, in detailed balance, to the expected populations of each state
in the final thermodynamic equilibrium.

1.7. A two-state model

Confining our attention to the encounters with thermally excited carriers, quite strong muon
spin relaxation is induced by the resultant intermittent hyperfine interaction. Measured in low
longitudinal field for nominally pure or undoped Si, the relaxation rate peaks at some 25 µs−1

8 Note, however, that in expressions of the type nvσ for carrier capture rates (i.e. number density × velocity ×
cross-section) it is not the Fermi velocity that should be used but the thermal velocity, as appropriate to carriers at
their respective band edges (e.g. electrons at the conduction band minimum). Fermi velocity is not an appropriate
concept for non-metals.
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around 600 K. It also requires high magnetic fields to quench the relaxation and from the
form of the field dependence Chow et al [29] were able to show that the hyperfine constant
involved corresponds to that of Mu0

T rather than that of Mu0
BC: the inferred values fit well

to an extrapolation of values determined spectroscopically [3] up to room temperature. By
implication, Mu0

T can reach its n = 1 ground state momentarily following electron capture,
even at elevated temperatures. This is not to say that Mu0

BC, or excited states of Mu0
T, are not

also involved in charge exchange cycles but simply that, if so, they are too short lived for the
muon spin to respond to their contribution.

Simplifying the problem to a two-state model, i.e. an interplay between the cage-centred
neutral atom and a charged diamagnetic state, Chow et al [29] deduced a time-average
occupancy of the Mu0

T state, i.e. a neutral fraction, rising to 6% at 800 K. Noting that the
onset temperature for relaxation shifts to higher temperature with p-type doping, these authors
further identified the charge cycle as a capture and loss of electrons, with an effective 0/+
transition located in the upper half of the energy gap, 340 meV below the conduction band.
They gave two possible interpretations. In one, they invoked a breakdown of adiabaticity and
surmise that the muon is unable to access the bond centre at high temperatures. The effective
donor depth is then unrelated to the scheme of figure 2. In the alternative, the fitted energy of
340 meV was identified as the activation energy for the process

Mu0
T → Mu+

BC + e,

close to the barrier to site change entered as 380 meV in figure 2 (this latter determined from
RF-µSR data around 400 K [9, 11]). In our view, the first interpretation is untenable, since
it is tantamount to identifying the activation energy with the direct ionization energy of Mu0

T,
without site change. Given the muonium hyperfine constant, which at 600 K is inferred to
be around 40% of the free atom value, the corresponding electron binding energy must be a
substantial fraction of a Rydberg9. The (0/+)T switching level is not represented in figure 2(b)
but it cannot lie within the gap: we would draw it very much deeper, e.g. below the valence
band.

2. Experiment: the three observables

2.1. Longitudinal and transverse relaxation

In our own experiments, working on the GPS instrument at PSI [35] with partial spin rotation
of the πM3 muon beam, we were able to make simultaneous measurements of the transverse
and longitudinal responses at each temperature. Examples of the temperature dependences are
shown in figures 3 and 4. The sample used here, and for all the measurements presented in
the present paper, is a lightly doped (1014 cm−3) p-type one. It is in fact the same sample as
was designated P14 by Kreitzman et al [9] and used in their RF resonance experiments. The
longitudinal relaxation data are similar but not identical to those reported earlier by Chow et al
[5] and Cox et al [36] for the nominally undoped silicon sample denoted as P12 (having a net
acceptor concentration of ∼1012 cm−3), the onset of relaxation being shifted to slightly higher
temperatures.

In the new measurements it is clear that the two relaxation rates, longitudinal and
transverse, differ on the low-temperature side of their peaks. This deserves some comment:
it is common in magnetic resonance, especially in NMR (nuclear magnetic resonance), to

9 A Rydberg, Ry = 13.6 eV, is the binding or ionization of hydrogen in its free or vacuum state. That of free
muonium is the same to within a quarter per cent, being a simple function of the reduced electron mass. No simple
formula relates binding energy to hyperfine constant for Mu0

T in Si, nor for quasi-atomic normal muonium in other
materials, since effective-mass theory clearly does not apply to such compact, strongly bound interstitial states.
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Figure 3. The temperature dependence of the two muon spin relaxation rates, measured in
transverse and longitudinal fields (TF and LF), both of 0.2 T [36].

Figure 4. The temperature dependence of the shift of the muon spin rotation frequency, relative
to the muon Larmor frequency. This data set is for a field of 0.2 T, where the Larmor frequency is
27.20 MHz [36].

observe a peak in longitudinal relaxation rate or, equivalently, a so-called T1-minimum. It is
also common in NMR to find that the transverse relaxation time, designated T2, differs from
the spin–lattice relaxation time T1 in the slow fluctuation regime but becomes equal to it in
the fast fluctuation regime. This behaviour is superficially similar to that shown by the present
µSR data but the analogy is not exact, since in the present case T2 is undefined in the static
limit, where hyperfine interactions would lead to a splitting rather than a simple broadening
of the spectrum. More analogous to the present case is that of spin exchange on an otherwise
long-lived paramagnetic centre. The transverse and longitudinal relaxation rates are then also
different in the slow fluctuation regime but peak and become equal when the spin exchange
rate becomes comparable with hyperfine constant [39].

For the present case of charge exchange there are two transition rates to consider and it
is the exit rate from the paramagnetic state relative to its instantaneous hyperfine constant that
controls this behaviour. For a complete description we must extract the separate transition rates
for entry into and exit from the neutral paramagnetic centre. This we do from simultaneous fits
to field dependences of the two relaxation rates, together with a third observable, which we now
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introduce. A preliminary account of this work has been given in a conference presentation [38];
in sections 3–8 we give a fuller account, both of the new simulation and fitting methods and
of the discussion of results.

2.2. The paramagnetic shift

While the fluctuating component of an intermittent hyperfine interaction depolarizes the muon
spin, its time average must represent an effective field, which shifts the Larmor precession
frequency from its free muon value, fµ = 1

2π
γµ B . (The muon gyromagnetic ratio is usefully

expressed as 1
2π

γµ = 136 MHz T−1, so, for comparison with the data of figure 4, for instance,
the Larmor frequency is 27.2 MHz at 0.2 T.) In the limit of fast transition rates, and for an
isotropic contact interaction A, in units of frequency, we expect [36]

δ f = 1
2 Ape p0, (1)

or, equivalently, a proportional shift of

δ f

fµ
≈ h A

4kT

γe

γµ

p0. (2)

Here p0 is the time-average neutral fraction and pe the electron polarization, approximated in
equation (2) by a Boltzmann expression appropriate to isolated paramagnetic centres. Seeking
such a shift in these terms, Cox et al [36] found it to be surprisingly large. Measured at PSI
in 0.6 T (for the same undoped silicon sample P12 as was used at TRIUMF by Chow et al),
it was found to reach 0.6% around 600 K, close to the temperature where the relaxation rate
is maximal. Setting this value in equation (2) gives p0 ≈ 1, i.e. appears to require a neutral
fraction close to unity at these temperatures. This is thermodynamically impossible in a two-
state (0/+) model but, coincidentally, could be reconciled with an interplay of three of the
four states of figure 2, namely between Mu0

T, Mu0
BC and Mu+

BC. A bottleneck to site change
artificially enhances the time-average occupancy of Mu0

T in this restricted scheme, although
in the full four-state model the neutral fraction is limited to low values by transitions to Mu−

T .
No set of transition rates could be found which consistently explained both the frequency
shift and the longitudinal relaxation data. A similar discrepancy between the relaxation data
and RF resonance data, notably for p-type samples, led Hitti and Kreitzman [37] to introduce
intermediate excited states in their model of the electron capture process.

A resolution of the puzzle came with further work by Cox et al [38], who found that the
frequency shift is not linearly proportional to the applied field, as implied by equation (1). (In
other words, the proportional shift is not field independent, as in equation (2).) Electron
polarization, which is undoubtedly proportional to field at high temperatures, is not the
dominant origin of the frequency shift. Instead, the shift must originate in the time dependence
of the hyperfine interaction, rather than its static average. The field dependences are shown
analysed in figure 5 below, after an exposition of the theory in section 3. Figure 4 shows the
temperature dependence of the shift, measured at 0.2 T for the new sample.

It is helpful to regard the broad single-line precession spectrum as the dynamical average of
the four contributing frequencies from each short-lived paramagnetic state, i.e. of the allowed
transitions between the Breit–Rabi eigenstates, mixed with the pure Larmor precession signal
of the diamagnetic states. However, only in the limit of short muonium charge state or electron
spin state lifetimes do these collapse to their algebraic average, slightly offset from the muon
Larmor frequency as in equations (1) and (2). In the regime where the spin or charge state
transition rates are comparable with the contributing frequencies, or rather their differences,
their averaging is a more complex problem. Numerical simulations due to Senba [39], for
the case of spin exchange on muoniated radicals, indicate the possibility of more substantial
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Figure 5. For data sets at each temperature ((a)–(e)), simultaneous or global fits are shown for ( )
longitudinal relaxation, (◦) transverse relaxation and (•) frequency shift as a function of field.
The resultant variation with temperature of the fitted transition rates is shown in (f) and tabulated
in table 1.

shifts from the muon Larmor frequency. An analytical expression is given by Gorelkin et al
[40], derived for spin exchange on muonic atoms, i.e. for the shift from the Larmor frequency
of negative muons, and including both dynamic and Boltzmann terms. Inserting parameters
appropriate to positive muons and muonium in silicon, this expression describes the qualitative
field dependence of our data quite well; on scaling by neutral fraction to adapt it to charge
exchange, however, it fails to account for the absolute magnitude of the shift.

We have therefore resorted to direct numerical simulations of muon response in the charge
exchange regime, as described in the following section. The new method allows simultaneous
fitting of all three observables, namely the transverse field frequency shift and the relaxation
rates measured in both transverse and longitudinal field.
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3. Theory

The calculation of the spin evolution is based on the density matrix method, where the density
matrix ρ is defined such that

dρ/dt = [H, ρ], (3)

〈X〉 = Tr(Xρ), (4)

Tr(ρ) = 1.

The diagonal terms ρi,i give the probability that the system is in the basis state φi . Off-diagonal
terms ρi, j give the mixing between states i and j . If ρ is zero except for ρi,i = 1, then the
system is definitely in basis state φi . If ρ = 1

N 1 (i.e. the normalized unit matrix), the system
is completely unpolarized. When ρ is written using the eigenvectors of the Hamiltonian H as
basis states, its time evolution can be obtained from the set of equations

ρi,i (t) = ρi,i (0),

ρi, j (t) = ρi, j (0) exp(i(Ei − E j)t/h̄).

However, in the present work, we use equation (3) directly.

3.1. Spin flips

If there is a probability x of the spin flipping at time t , we can write

ρ(t + ε) = (1 − x)ρ(t − ε) + xρ ′(t − ε),

where ρ ′ is generated from ρ by flipping the spin. This is done by exchanging both columns
and rows with spin up with the corresponding ones with spin down but other quantum numbers
unchanged. The basis states used at this stage must have each spin as a good quantum number.
Note that this spin flip rate x is half the ‘spin encounter’ or ‘spin exchange’ rate as a new spin
being encountered may have the same spin as the one in the wavefunction. We can also write

ρ(t + ε) = (1 − 2x)ρ(t − ε) + 2xρ0(t − ε),

where ρ0 has the flipped spin polarization set to 0. It is possible to include a Boltzmann
polarization of the new electron here.

If the spin may flip at any time with rate x per unit time, then

dρ(t)/dt = −2xρ(t) + 2xρ0(t).

3.2. Charge exchange or site change

We have a density matrix ρn for each charge state, normalized such that Tr(ρn) is the probability
of the system being in state n. Since there is no ‘mixing’ between charge states we do not
consider the state to be another quantum number. Any observable 〈X〉 = Tr(X

∑
ρn). For a

charge state change from m to n at time t , probability x ,

ρm(t + ε) = (1 − x)ρm(t − ε),

ρn(t + ε) = ρn(t − ε) + xρm(t − ε)

and for site change at any time, with rate x per unit time,

dρm(t)/dt = −xρm(t),

dρn(t)/dt = +xρm(t).

All spins are assumed to be preserved in the change. Nothing happens to the overall
measured signal Tr((ρm + ρn) · S) until the states evolve differently with time.
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The Hamiltonian for each state must include the same set of particles. If for example
one state is ionized, the electron is still represented but its interaction with the other particles
should be set to zero.

For repeated charge exchange either the same electron returns, having undergone no
interaction except its own Zeeman splitting while ionized, or there is a new electron each time
which is not spin polarized. This can be represented by giving the ionized electron a very high
spin flip rate, or by including a spin flip with 50% probability in one of the charge exchange
operations.

3.3. Solving the problem

Once all the interactions, spin flips and site changes have been included, we can evaluate
dρ/dt for each element ρi j in the form

∑
ρkl Xi jkl . Now we have an eigenvalue equation for

the matrix X(i j),(kl)—but unlike in the usual quantum matrix method X is not Hermitian, so the
eigenvalues may be complex. The solution is obtained in the form ρ = ∑

ρa exp[(−λa +iωa)t]
and then equation (4) is used to obtain the observable value such as the muon polarization.

4. Computation and data analysis

The logical sequence of program operations is described below. In practice some of these
overlap, e.g. the static Hamiltonian is generated in block-diagonal form with each block being
one charge state.

4.1. Static system

First calculate the Hamiltonian for each charge state, ignoring spin flips and charge exchange.
For the case of Mu0

T in silicon we need only include the isotropic hyperfine coupling and
Zeeman splitting of each spin, but in general the full anisotropic hyperfine interaction, dipolar
interaction and quadrupole splitting could be added, governing the evolution:

dρ

dt
= [H, ρ] = Hρ − ρH.

4.2. Flatten

Flatten the matrix ρ into a vector R and make a corresponding ‘Hamiltonian’ X such that we
can write dR/dt = XR, where R(i + N × j) = ρ(i, j) and

X((i + N × j), (k + N × l)) = H (i, k)δ( j, l) − H ( j, l)δ(i, k).

4.3. Spin flip

Add spin flips for each state: we write the indices of the matrix X and the vector R as (i j, kl)
where i and k represent the spin of the electron (row and column indices of the original ρ) and
j and k represent all the other quantum numbers (the muon spin). Then

X(i jkl, i jkl) = X(i jkl, i jkl) − λ/2

along the diagonal and, elsewhere,

X(i jkl, m jml) = X(i jkl, m jml) + (λ/2) × β(i, k).

Here β(i, k) is the density matrix of the exchanging electrons—which could have non-zero
polarization.
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4.4. Combine charge states

Append the vectors R for each state to give a single long vector. Similarly join the matrices X
to give a single matrix describing the evolution of either charge state, with the original matrices
as block diagonals and the off-diagonal blocks set to zero.

4.5. Charge exchange

Now we add charge or site exchange. For diagonal elements of charge state i , subtract the sum
of the rates of transition out of state i . Given Xi j,kl where i and k are the charge states and j
and l are the quantum numbers within each state,

Xi j,i j = Xi j,i j −
∑

k

λik .

For the ‘diagonal’ elements of the off-diagonal blocks joining state i to k we add the rate of
transition from i to k:

Xi j,k j = Xi j,k j + λik .

Given the charge exchange rates in each direction, the equilibrium population can be
calculated and may be used as the initial condition. Similarly, though only for a two-state
system, given an overall charge cycling rate and populations for each state, the individual rates
can be calculated.

4.6. Matrix solution

The final matrix equation is

dR/dt = XR.

This is like the usual matrix equation for simple quantum mechanics,except that the eigenvalues
are complex. Solve with a suitable numerical library subroutine to give:

• Purely imaginary eigenvalues: oscillating term, no relaxation. These must occur in
conjugate pairs.

• Purely real, negative eigenvalues: ‘longitudinal’ relaxation.
• A complex, negative real part: damped oscillations. In conjugate pairs.
• The zero eigenvalue: non-relaxing polarization. One such state should have the ‘flattened

unit matrix’ as its eigenvector meaning that the unpolarized state is stable. (The actual
value may be different, if a non-zero spin flip polarization was used, or the equilibrium
populations of the charge states are not equal.) There may be additional zero eigenvalues,
for example in the case of no charge exchange.

• No eigenvalue should have a positive real part, which would imply exponentially increasing
polarization with time.

Solutions will be of the form

R =
∑

Ri exp(Ei t)

and, after matching up conjugate pairs,

R =
∑

Ri exp(−λi t) cos(iωi t + φi).

In practice there is no need to match pairs, and this can cause difficulty when two pairs of levels
are degenerate. We continue to use complex numbers for the calculations and later check that
the answer has zero imaginary part.
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4.7. Initial state

Calculate the initial density matrix, given the muon polarization (100%), other spin
polarizations (0%) and the charge state populations (specified). For rapid charge exchange
the initial state has little effect and a slightly simpler solution is obtained by starting with the
equilibrium population.

4.8. Measured state

Convert the flattened initial density matrix to a sum of eigenstates. Flatten the spin polarization
operator S and convert it to use the eigenstates as basis states.

4.9. Solution

The density matrix at time t is given from equation (3). Calculate the observable muon
polarization 〈S〉 = Tr(ρS) at time t as a sum of exponential terms. Evaluate this for time t
over the time range used experimentally.

There are now two ways to extract a relaxation rate or frequency shift:

(i) Evaluate P(t) over a specified time interval, add weights based on the muon lifetime and
statistics, and fit to a function such as P(t) = a0 cos(ωt + φ) exp(−λt).

(ii) Often P(t) has one dominant term (or pair of conjugate terms). Search for this largest
term, and extract values for λ and ω directly.

Alternatively evaluate P(t) over the same time bins as the raw data and compare directly.
Additional asymmetry and background terms may have to be added.

4.10. Fitting the charge exchange parameters

The difference between predicted and experimentally measured relaxation rates and shifts is
now used to adjust the initial values of charge exchange rates and the hyperfine constant,
and the above calculation is re-run as required within a standard Levenberg–Marquardt-type
fitting routine to obtain the optimum parameters. All longitudinal and transverse data at
each temperature are included to get a consistent description of the muon dynamics at that
temperature.

4.11. Functional form notes

Some terms may have ‘initial amplitude’ a0 > 1.0 or <0 especially near ‘critical damping’
conditions. The terms will be found to cancel, ensuring that the final evaluated P(t) always
starts at 1.0 as expected. Also dP/dt = 0 at t = 0 unless the muon’s spin itself is flipped.

4.12. Memory use

The individual state Hamiltonians have size N = (2I1 + 1)(2I2 + 1) · · · (2In + 1) in each
dimension. Once flattened, the matrix X has size N2 in each dimension. Joining c charge
states makes X have size cN2 in each dimension, or c2 N4 elements.

The simple system of two spin 1
2 particles and two charge states therefore requires solving

a 32 × 32 matrix to give up to 32 complex terms in the solution.
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Table 1. Fitted rates of transition between (1) neutral and (2) diamagnetic states.

T Ahf ν12 ν21 Neutral
(K) (MHz) (µs−1) (µs−1) fraction

500 −67.0 1 732 ± 90 159 ± 15 0.084 0
500 −567.1 ± 442.0a 700 ± 2850 2.5 ± 3.3 0.003 54
550 1842.5 10 010 ± 400 36.1 ± 1.6 0.003 59
600 1824.0 26 280 ± 230 259.7 ± 2.6 0.009 79
700 1787.0 69 300 ± 1500 1310 ± 44 0.018 6
790 1753.7 166 600 ± 8000 5390 ± 480 0.031 3
900 1713.0 418 000 ± 46 000 22 000 ± 4900 0.050 0

a Hyperfine constant varied in fit.

Table 2. The calculated band gap and Fermi energy for our sample, and fitted values of the energy
difference between the Mu0

T state and the low-lying diamagnetic state. The parameters are defined
in figure 6.

T Paramagnetic Eg kT EF EP(T ) Eion(T ) �(T )

(K) fraction (eV) (eV) (eV) (eV) (eV) (eV)

550 0.003 59 1.049 17 0.047 38 −0.563 51 −0.266 74 0.296 77 −0.100 05
600 0.009 79 1.035 00 0.051 69 −0.548 83 −0.239 14 0.309 69 −0.115 63
700 0.018 56 1.006 67 0.060 30 −0.534 95 −0.240 39 0.294 57 −0.105 82
790 0.031 34 0.981 17 0.068 05 −0.525 55 −0.235 65 0.289 90 −0.105 93
900 0.050 02 0.950 00 0.077 53 −0.514 62 −0.232 23 0.282 39 −0.104 26

5. Results

Global fits for all three observables at selected temperatures are shown in figures 5(a)–(e),
giving an indication of the quality of the present model. Restricting the hyperfine constant
to the Mu0

T value, with its temperature dependence extrapolated from values determined
spectroscopically below room temperature [3], we can fit the data for 550 K and above,
giving the results in table 1. In principle, free fits will give an independent determination
of the hyperfine constant; in practice, our data do not extend to high enough field to do this
accurately. We do confirm consistency with the extrapolated values, however, as well as
with those deduced from higher-field longitudinal relaxation rates [29]. Fixing the values of
hyperfine constant yields more precise fits for the dynamical parameters.

For the 500 K data set, the fit requires the hyperfine constant to be significantly smaller than
that for Mu0

T, roughly consistent with though probably greater than that for Mu0
BC (compare

the first two lines in table 2). Both states may contribute here or else either the population or
hyperfine constant for Mu0

BC are enhanced at a defect-related site: we return to this possibility
below. The fits here use an isotropic hyperfine constant corresponding to a Mu0

BC species that
is mobile or which hops locally between the four bonds around a central atom or, equivalently,
that can adopt a new orientation of its symmetry axis after each charge cycle. The 550 K data
could likewise be fitted slightly better using a non-zero population of both paramagnetic states,
but at higher temperatures it is clear from the field dependences that transitions in and out of
Mu0

T dominate the muon spin response. This is not to say that other paramagnetic states are
unpopulated, notably Mu0

BC or excited states of Mu0
T, but these have lower hyperfine constants

and their lifetimes must be too short for them to contribute either to the relaxation or to the
frequency shift.

In table 1 the rate of exit from the neutral paramagnetic state is designated ν12 and the entry
rate as ν21. Simple Arrhenius plots give their respective activation energies as 0.391±0.006 eV
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Figure 6. The energy levels for the various muon sites and charge states as a function of the Fermi
energy, at 600 K.

and 0.693±0.010 eV above 550 K. These are shown in figure 5. The two transition rates define
the time-average occupancy or population of the dominant paramagnetic state, according to
p0 = ν21/(ν12 + ν21), reaching 5% at 900 K as shown in figure 710. In the following section
we explore the expectations for and inferences from this quantity, which we call the neutral
fraction.

6. Equilibrium analysis

We now assume that the system is in thermal equilibrium between all possible sites and charge
states. This is rarely true for muonium studies, especially at lower temperatures. In the present
case it is clearly still marginal at 500–550 K, but proves to be justified at higher temperatures
by the large number of charge exchange cycles executed within the muon lifetime: the cycle
rate at 600 K, for instance, is already ν12ν21/(ν12 + ν21) ∼ ν21 = 260 µs−1.11

To calculate the equilibrium populations of the various muonium states, charged and
neutral, we must know the Fermi energy EF. From this point of view, the usual configuration
diagram of figure 2(a) is misleading, since it is effectively drawn for EF at the conduction band
edge. We use instead the standard representation of deep-level defects, as in figure 6, where
the energy of charge defects varies linearly with EF (with a gradient equal to their charge) [44],
and we have also represented the metastability of the neutral defect.

The sample is actually lightly p-type doped (boron doped with an acceptor concentration
of 4.1 × 1014 cm−3). In the usual notation,

ne = Nc exp(−EF/kT ),

10 The Boltzmann or electron polarization contribution to the frequency shift (equation (1)) is reduced accordingly
and is neglected in the fits of figure 5 and table 1.
11 The muon spin relaxation, of course, is slow by comparison; it is not usual in µSR studies to speak of a muon
spin temperature but this remains, in effect, very much lower than the lattice or electron temperature until the spin
relaxation is complete.
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Figure 7. Equilibrium populations of the muon states as a function of temperature. The data points
are our experimental results for the neutral fraction p0, i.e. the time-average occupancy of Mu0

T,
also shown on linear scales in the inset. — · —: Mu+

BC; ——: Mu0
T; · · · · · ·: Mu−

T ; - - - -: Mu0
BC;

: fitted paramagnetic fraction.

nh = Nv exp(−Eg + EF/kT )

and, for a doped semiconductor when all the donors and acceptors are ionized,

ne − nh = Nd − Na .

For Si, the electrons have non-spherical symmetry, with effective mass parallel to k, mel = 0.98
and perpendicular met = 0.19, and there are Mc = 6 equivalent minima in the Brillouin zone.
The effective degeneracy of the band is therefore [41]:

Nc = 2m1/2
el met Mch−3(2πkT )3/2.

There are two degenerate bands of holes with mh1 = 0.49 and mh2 = 0.16, giving the
degeneracy

Nv = 2(m3/2
h1 + m3/2

h2 )h−3(2πkT )3/2.

The band gap Eg is 1.12 eV at 300 K, linearly decreasing with T above 300 K (the gradient
giving 1.205 eV when extrapolated to T = 0). The Fermi energy can be calculated for any
temperature, and shows that this sample becomes intrinsic around 600 K with EF just below
the centre of the gap. For lower temperatures, EF is closer to the valence band. We use the
doped Fermi energy in the calculations below. The effect of the muons themselves as donors
or acceptors, and the electron–hole pairs formed along the track, are neglected compared to
the intrinsic carrier concentration.

We assume also that the donor/acceptor levels scale proportionally with Eg. (An alternative
approach, which makes little difference to our conclusions, would be to assume the donor and
acceptor depths locked to the respective band edges.) If there is a low-lying diamagnetic level
(assumed to be Mu+

BC for EF midway in the gap or below) and all other levels are high enough
in energy to be <5% populated, then we can approximate the population of Mu0

T as

p0 = exp(−(EMu0
T
− EMu+

BC
)/kT )NT/NBC = exp(−EP/kT )NT/NBC.

Here NT and NBC are multiplicity factors: the numbers of T and BC sites in the structure
are in the ratio 1:2 for Si, but including a factor of 2 for the spin degeneracy of the T site
paramagnetic state the net ratio is NT/NBC = 1. The quantity EP is defined here as the energy
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Figure 8. Equilibrium populations for various doping levels: (a) - - - -: Mu−
T and ——: Mu+

BC for
n-type doping. (b) Mu0

T with n-type (——) and p-type (· · · · · ·) doping.

difference between the Mu+
BC and Mu0

T states when the Fermi energy EF takes its equilibrium
value near mid-gap, as illustrated in figure 6. It is also useful to define Eion(T ) = −EF − EP

as the corresponding energy difference in the hypothetical case where the Fermi energy lies at
the conduction band edge.

The resulting energy differences EP between Mu0
T and Mu+

BC are shown in table 2; they
exhibit a small temperature dependence consistent with the variation of the Fermi energy.
Taking the single-site ionization energy of Mu0

BC to be 0.21 eV [11], scaled for the high-
temperature band gap,and using the construction of figure 6,we obtain � = −0.105±0.005 eV
over the range 600–900 K. By implication,Mu0

T is more stable than Mu0
BC in this range, possibly

indicating an inversion of the site preference from cryogenic temperatures.
We can now calculate the populations of all the states at any temperature, as in figure 7.

The fraction of Mu0
BC will be around 0.2% at 600 K, independent of �, and decreasing at lower

temperatures. The fitting of an intermittent hyperfine parameter resembling that of Mu0
BC in

the 500 K data set (top two lines of table 1) suggests a longer lifetime and out-of-equilibrium
population for this state at this lower temperature. This may indicate a transient pairing of
muonium with a boron dopant atom, even though passivation complexes are not stable at these
temperatures, or it may represent the effect of other impurities such as oxygen that are believed
to catalyse the T to BC site change [42, 43]. Muons may trap into such sites for T � 500 K
but for T > 550 K the probability of a muon occupying such a site at any instant is small.

It is interesting to note that for moderate n-type doping the same calculations predict that
the dominant charge state should switch from Mu−

T around room temperature to Mu+
BC at high

temperature, accompanied by a peak in the neutral fraction—see figure 8. The peak value
of the neutral fraction in this case would be a sensitive measure of the elusive Hubbard or
Anderson parameter U .

For our sample the fractions of Mu0
T and Mu−

T are comparable. We could have: (a) in
situ ionization of MuT being much faster than any site changes and therefore determining the
lifetime of Mu0

T or (b) the ionization being much slower than the change to Mu+
BC. If both rates

contribute to the lifetime then the relaxation can sometimes be non-exponential. The rate of
transition from the lowest diamagnetic level (population >99% for T < 600 K) provides an
upper limit to the overall relaxation rate possible, however rapidly the muon polarization may
be relaxed as a result of charge cycling between the other possible states. Otherwise the field
dependence of the relaxation rates is a function of the lifetime of the paramagnetic state.



S4758 J S Lord et al

7. Electron processes versus hole processes

The dominant process causing charge cycling may be either the site change from Mu+
BC to

Mu0
T, or charge cycling in the MuT state. Consider first the site change process. From table 1

the activation energies for the transitions are

Mu0
T → Mu+

BC 0.391 eV,

Mu+
BC → Mu0

T 0.693 eV.

These may be due to either electrons or holes:

Mu0
T → Mu+

BC + e−, (5a)

Mu0
T + h+ → Mu+

BC, (5b)

Mu+
BC → Mu0

T + h+, (5c)

Mu+
BC + e− → Mu0

T. (5d)

Capture processes (5b) and (5d) depend on the carrier concentration and cross-sections.
Processes (5a) and (5c) can be considered as having an ‘activation’ energy which should be
no less than the corresponding ionization energy. The principle of detailed balance requires
the number of muons undergoing each transition—the rate multiplied by the population—to
be equal in the forward and reverse directions, so we need only analyse one direction.

From figure 6 the ionization energy for (5a) is −EF − EP = 0.309 eV so an activation
energy of 0.391 eV is plausible for an electron ionization with an accompanying site change.

However, for process (5c) the hole ionization energy is EP + (Eg + EF) = 0.726 eV which
is greater than the experimentally obtained activation energy, so we can exclude the acceptor
ionization process. Therefore the charge cycling takes place by electron capture and loss.

Next consider the in situ ionization. This may again be due to either electrons or holes:

Mu0
T → Mu−

T + h+, (6a)

Mu0
T + e− → Mu−

T , (6b)

Mu−
T → Mu0

T + e−, (6c)

Mu−
T + h+ → Mu0

T. (6d)

Again the capture processes (6b) and (6d) depend on the carrier concentration and cross-
sections, and processes (6a) and (6c) can be considered as having an ‘activation’ energy which
should be no less than the corresponding ionization energy.

From figure 6 the electron ionization energy for process (6c) is 0.56 eV so an activation
energy of 0.693 eV is plausible for an electron ionization/capture cycle. However, the hole
ionization energy for (6a) is about 0.5 eV which is greater than the experimentally obtained
activation energy, so we can exclude the acceptor ionization process. Once again, one can
conclude that the charge cycling takes place by electron capture and loss.

8. Concluding remarks: confirmation of negative U and determination of its value

Figure 6 summarizes our findings. Represented here are the same four states as account for
muonium spectroscopy and dynamics up to room temperature. Allowing only for a continued
variation of the Mu0

T hyperfine constant to higher temperature we find no need to invoke
additional or qualitatively different high-temperature states. We use the single-site ionization
energy of Mu0

BC, as determined from RF resonance studies below room temperature [11] and
adjusted only in proportion to the temperature dependence of the band gap to fix its point
of equilibrium with Mu+

BC. Assuming this latter to be the stable ionic state under intrinsic
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conditions, i.e. with the Fermi energy near mid-gap, we use our results for the neutral fraction
to establish that Mu0

T lies higher in energy than Mu+
BC by 0.250 ± 0.02 eV. Extrapolated to

room temperature, this difference becomes close to 0.3 eV.
This procedure forces us to the conclusion that, in the temperature range 600–900 K at

least, Mu0
T lies lower than Mu0

BC by an energy � = −0.105 ± 0.005 eV. Extrapolated to room
temperature, the equivalent difference is 0.12 eV.

Our basic supposition that Mu+
BC remains the most populated state, from room temperature

up to 900 K, deserves comment. Certain computational models appear to show that proton
trajectories avoid the bond-centred site at these temperatures [45] but these may be misleading,
since the simulation time windows do not exceed a few picoseconds (and are mostly much
shorter), whereas our diamagnetic state lifetimes vary between 40 ps at 900 K and 4 ns at 600 K.
The breakdown of adiabaticity is not something which sets in abruptly at high temperature—it
may already be manifest in the T to BC barrier which assures the metastability of muonium at
cryogenic temperatures. On the other hand, Mu0

T is already found to be more stable than Mu0
BC

in a calculation which introduces a double adiabatic approximation, in which electrons, muons
or protons, and host nuclei are separately decoupled [46]. It may also be that the effective
barrier height increases with temperature [25] and that vibrational enthalpies modify or even
invert the stabilities of the two sites.

This reordering of the T and BC levels implies a redefinition of donor and acceptor levels,
at least at high temperature. The new values are given by the appropriate intersections in
figure 6. Accepting the RF-µSR results of 0.56 eV for the single-site ionization energy of the
negative ion, Mu−

T , and of 0.21 eV for that of the bond-centred neutral, Mu0
BC [11], we define

the donor level as lying below the conduction band edge by ED = 0.21 + 0.12 = 0.34 eV
and find the acceptor level to lie essentially at mid-gap, as was noted at lower temperature
for hydrogen [18]. In conclusion, we confirm negative-U behaviour and estimate this elusive
quantity to be

U = 0.21 − 0.56 + 0.12 = −0.23 eV.

The Mu(+/−) pinning level, where Mu+
BC and Mu−

T are in equilibrium, and where the Fermi
energy would be pinned in the hypothetical case where muonium centres are in abundance,
dominating shallow dopants, lies above mid-gap, about 0.42 eV below the conduction band
edge.
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